
Integrable extension of nonlinear sigma model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 L325

(http://iopscience.iop.org/0305-4470/31/17/004)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) L325–L330. Printed in the UK PII: S0305-4470(98)91103-9
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Abstract. We propose an integrable extension of nonlinear sigma model on the target space of
Hermitian symmetric space (HSS). Starting from a discussion of soliton solutions ofO(3) model
and an integrally extended version of it, we construct general theory defined on arbitrary HSS
by using the coadjoint orbit method. It is based on the exploitation of a covariantized canonical
structure on HSS. This term results in an additional first-order derivative term in the equation
of motion, which accommodates the zero-curvature representation. Infinite conservation laws of
nonlocal charges in this model are derived.

The study of integrability of the nonlinear sigma model (NLSM) on the target space of
homogeneous spaceG/H was initiated in [1] where it was discovered thatO(N) NLSM
admits a zero-curvature representation, and an infinite family of local and nonlocal conserved
charges [2] was derived along with a one-parameter family of Bäcklund transformation.
This result was immediately generalized to the target space ofCP(N) [3] and to the
principal chiralSU(N) model where nontrivial soliton solutions were obtained by applying
the inverse scattering technique [4]. Later, the complete integrability on the target space of
Riemannian symmetric spaces was established through the works of [5], and various aspects
of integrability were developed and applied to the survey of two-dimensional quantum field
theory [6].

In this letter, we search for a possible integrable extension of the NLSM on the
homogeneous spaceG/H . Our main result is that the NLSM allows an integrable extension
when the target space is given by the Hermitian symmetric space (HSS) which is a symmetric
space equipped with a complex structure acting on the coset [7]. In achieving this, a
covariantized canonical structure term on HSS is added to the original action which results
in a first-order total derivative in the equation of motion, and this is found to be completely
integrable. In the process, we used the coadjoint orbit method [8] as an essential tool. We
start with a discussion of an integrable extension of the simpleO(3) model in this method
and its soliton solution to give some motivation.

Let us consider the action ofO(3) NLSM:

S = 1
2

∫
d2x∂µQ · ∂µQ Q ·Q = 1. (1)

We consider the solution of the following equation (with prime= ∂
∂x

, dot= ∂
∂t
)

Q×Q′′ −Q× Q̈ = 0. (2)
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Note that cross product withQ reproduces the formal equation of motion of (1),
�Q − (Q · �Q)Q = 0. We use the standard parametrization forS2 given by Q =
(sinθ cosφ, sinθ sinφ, cosθ). Substitution into (2) leads to

2 cosθθ ′φ′ + sinθφ′′ − 2 cosθ θ̇ φ̇ − sinθφ̈ = 0 (3)

θ ′′ − sinθ cosθφ′2− θ̈ + sinθ cosθφ̇2 = 0. (4)

Let us try solutions of the formθ ≡ θ(x − vt), φ ≡ φ̂(x − vt)+�t . We obtain

0= 2(1− v2) cosθθξ φ̂ξ + (1− v2) sinθφ̂ξξ + 2�v cosθθξ (5)

0= (1− v2)θξξ − (1− v2) sinθ cosθφ̂2
ξ − 2v� sinθ cosθφ̂ξ +�2 sinθ cosθ (6)

with ξ = x − vt . Let χ = (1− v2) sinθφ̂ξ (|v| < 1). Then, from (5)

χξ = −θξ (2v� cosθ + χ cotθ) (7)

which upon integration yields

χ = v�(cos 2θ + c0)

2 sinθ
. (8)

From (6), we obtain

θξ
2+ χ2

(1− v2)2
− �

2 cos 2θ

2(1− v2)
= E. (9)

We choosec0 = −1, which simplifiesχ to χ = −v� sinθ .
Let us consider the effective potentialθξ 2+ Veff(θ) = E given by

Veff(θ) = −�
2 cos2 θ

(1− v2)2
+ �

2(1+ v2)

2(1− v2)
. (10)

For a soliton solution, we chooseE = �2(1+v2)

2(1−v2)
, which yields

θξ
2 = �2

(1− v2)2
cos2 θ. (11)

Note that differentiation of the above equation with respect toξ leads to the sine-Gordon
equation in terms of̄θ ≡ 2θ [1]. One can show that the solution is given by

sinθ = ± tanhβ(ξ − ξ0) (12)

with β = �
1−v2 . Hence we obtain

θ(x, t) = sin−1

[
± tanh

(
�

1− v2
(x − vt − ξ0)

)]
(13)

φ(x, t) = φ0− v�

1− v2
(x − vt)+�t. (14)

We find that� = 0 only produces a trivial solution, andv = 0 gives the stationary soliton
solution. The soliton is of topological nature, because sinθ → ∓1, as x → ∓∞ or
x →±∞†.

Motivated by the above procedure, we search for a simple possible integrable extension
in the form

Q× Q̈−Q×Q′′ = γ 0Q̇+ γ 1Q′ (15)

† Since ourθ is defined to be 06 θ 6 π , ξ must be restricted to be in the rangeξ0 6 ξ < ∞ in the solution
(12).
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whereγ 0 andγ 1 are constants. This form is suggested by an observation that withγ 1 = 0
and in absence of second-order time derivative term in the left-hand side, the above is
the continuous Heisenberg ferromagnet equation which is well known to be completely
integrable [9]. In terms ofξ = x − vt , the above equation has a good chance of being
integrable.

Again let us useQ = (sinθ cosφ, sinθ sinφ, cosθ) and try a solution of the form
θ ≡ θ(ξ), φ ≡ φ̂(ξ)+�t . Substitution into (15) gives

−vγ 0θξ + γ 1θξ = 2(1− v2) cosθθξ φ̂ξ + (1− v2) sinθφ̂ξξ + 2v� cosθθξ (16)

vγ 0 sinθφ̂ξ − γ 0� sinθ − γ 1 sinθφ̂ξ = �2 sinθ cosθ + (1− v2)θξξ

−(1− v2) sinθ cosθφ̂2
ξ − 2v� sinθ cosθφ̂ξ . (17)

Let χ = (1− v2) sinθφ̂ξ (|v| < 1) as before. Then, from (16) we find

χ = v� cos 2θ − 20 cosθ + c
2 sinθ

(18)

with 0 = γ 1− vγ 0. Equation (17) gives

E = θξ 2+ χ2

(1− v2)2
− �

2 cos 2θ

2(1− v2)
− 2�γ 0 cosθ

(1− v2)
. (19)

With 0 = 2�v, c = 3�v, we have

χ = �v(cosθ − 1)2

sinθ
. (20)

The effective potential is given by (19) as

Veff(θ) = �2v2

(1− v2)
2

(1− cosθ)2

1+ cosθ
[(1− cosθ)− 1− v2

v2
(1+ cosθ)] + 3�2

2(1− v2)
(21)

where we have setγ 0 = −�. It can be put into the following expression;

V (θ) = 4�2

(1− v2)
2

sin4 θ
2

cos2 θ
2

[
sin2 θ

2
− (1− v2)

]
+ 3�2

2(1− v2)
. (22)

Definingβ ≡ �
1−v2 , α2 ≡ (1− v2) and choosingE = 3�2

2(1−v2)
, we find

θξ
2+ 4β2 sin4 θ

2

cos2 θ
2

(
sin2 θ

2
− α2

)
= 0. (23)

Let ω = sin θ
2. Then, (23) becomes

dω = ∓βω2
√
α2− ω2 dξ (24)

which can be immediately integrated to yield

ω = ± α√
1+ α4β2(ξ − ξ0)2

. (25)

Hence the soliton solution is given by

θ(x, t) = 2 sin−1

[
±
√

1− v2

1+�2(x − vt − ξ0)
2

]
. (26)

Also from χ = (1− v2) sinθφ̂ξ = �v (1−cosθ)2

sinθ , we have

φ(x, t) = φ0+ tan−1

[(
�

v

)
(x − vt − ξ0)

]
+�t. (27)
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Unlike the previous case, this soliton is nontopological: sin(θ/2) starts at 0 atξ = −∞,
reaches±√1− v2 at ξ = ξ0, and goes back to 0 atξ = ∞.

The above analysis suggests that the first-order derivative term on the right-hand side
of (15) could be one possible integrable extension ofO(3) model. It originates from the
covariantized symplectic structure onS2 and can be generalized to arbitrary HSS, as can be
seen from the canonical structure of integrable generalized Heisenberg ferromagnet system
on HSS [8]. To describe a general formalism on HSS, we start with a brief summary
of the coadjoint orbit approach to NLSM [8]. Consider a groupG, Lie algebraG and
its dualG∗ : X ∈ G; u ∈ G∗. Let us assume that the inner product is given by the trace:
〈u,X〉 = Tr(Xu). Then,G andG∗ are isomorphic and the coadjoint orbit, which is generated
as the orbit of coadjoint action of the groupG can be parametrized by

Q = gKg−1 = QAtA K ∈ G (A = 1, . . . ,dimG) (28)

wheretA’s are the generators ofG. One can see thatQ on each coadjoint orbit characterized
by the elementK is defined on a homogeneous spaceG/H , whereH is the stabilizer of
the point ofK. It is well known that there is a natural symplectic structure on each orbit,
which comes from the cotangent bundleT ∗G ∼= G×G∗ via symplectic reduction [10]. The
canonical one-form onG/H which has a left globalG and a right localH invariance is
given by

2 = 〈Ad∗(g)K, δgg−1〉 = Tr(Kg−1δg). (29)

Based on the above, we propose the following action for the NLSM on the target space
of coadjoint orbit:

S =
∫

d2x Tr[∂µQ∂
µQ+ 2γ µ(Kg−1∂µg)] (30)

whereγ µ is a two vector. Note that the above action has a right localH symmetry which is
responsible for the reduction to the coset spaceG/H . The first term becomes the standard
Lagrangian of NLSM onG/H [8]; ∼ gαβ∂µψ̄α∂µψβ , wheregαβ is the metric in terms of
the local coordinateψα onG/H . The second term is the covariantized canonical structure
of (29) on the coadjoint orbit. In a frame withγ 0 = 1 andγ 1 = 0, it becomes the canonical
structure∼ pq̇. The equation of motion with respect to the variation ofg is given by

∂µ[Q, ∂µQ] + γ µ∂µQ = 0. (31)

Note that inSU(2) case withQ = Q · t, the above equation reduces to (15).
To demonstrate a complete integrability of (31) on HSS [7], we first explain HSS in

terms of coadjoint orbit language. Let us recall that symmetric space is a coset spaceG/H

for Lie groups whose associated Lie algebrasG andH, with the decompositionG = H⊕M,
satisfy the commutation relations,

[H,H] ⊂ H [H,M] ⊂M [M,M] ⊂ H. (32)

For HSS, (i) the elementK is chosen as the central element of the Cartan subalgebra of
G whose centralizer inG is H . (ii) We haveJ = Ad(K) acting on the coset is a linear
map satisfying the complex structure conditionJ 2 = −1, which along with (32) gives the
identity [8]:

[Q, [Q, ∂µQ]] = −∂µQ. (33)

Next, we give the zero-curvature representation of (31). Introduction of

Aµ = a[Q, ∂µQ] + bερµ[Q, ∂ρQ] + cµQ (34)
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and substitution into

εµν(∂µAν − ∂νAµ + [Aµ,Aν ]) = 0 (35)

with use of (33) for HSS yield

0= 2b∂µ[Q, ∂µQ] + 2εµνcν∂µQ+ 2aεµνcν∂µQ− 2bcµ∂µQ

+(a2+ 2a − b2)εµν [∂µQ, ∂νQ]. (36)

We have (withε01 = 1, ηµν = (−,+), εµνενσ = ηµσ )
a2+ 2a − b2 = 0 εµν(1+ a)cν − bcµ = bγ µ. (37)

Writing (a + 1)2− b2 = 1, we have

a = 2

λ2− 1
b = 2λ

λ2− 1
. (38)

From the second equation of (37), we find

cµ = 4λ2

(λ2− 1)2
γµ + 2λ(λ2+ 1)

(λ2− 1)2
ε ν
µ γν. (39)

Note that in the case ofcµ = γ µ = 0, the condition (37) is precisely the one emerging from
the zero-curvature condition of NLSM on the homogeneous symmetric target space [5].

Permitting the zero-curvature condition, (31) has an infinite number of local [9] and
nonlocal [2] conservation laws. We compute the nonlocal conserved charge here by making
use of the well known technique from the analysis of the principal chiral model [11–13].
Given the linear problem,

(∂µ + Aµ)ψ(x; λ) = 0 (40)

let us consider the Laurent expansion around1
λ

,

ψ(x; λ) =
∞∑
n=0

ψn

λn
ψ0 = 1. (41)

The infinitely many conserved currents are defined as

J (n)µ = εµν∂νψn(x) (42)

which automatically satisfies the current conservation∂µJ
µ = 0. Theψn’s are determined

recursively as follows: substituting (34), (38), and (39) into (40), one obtains (jµ ≡
2[Q, ∂µQ]) in the lowest order in1

λ

∂µψ1+ εµν(jν + 2γ νQ) = 0 (43)

whose current conservation is nothing but the equation of motion (31). The next lowest
order produces

∂µψ2+ (jµ + 4γµQ)+ εµν(jν + 2γ νQ)ψ1 = 0. (44)

The higher order yields the following relations (p > 0);

0= ∂µψp+3+ εµν
[p/2]+1∑
m=0

(j ν + 2(m+ 1)γ νQ)ψp+2−2m

+
[ p+1

2 ]∑
m=0

(jµ + 4(m+ 1)γµQ)ψp+1−2m + 2εµνγ
νQ

[p/2]∑
m=0

(m+ 1)ψp−2m (45)

which determinesψn (n > 3) completely in terms of lowerψn’s.
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The conserved charges can be constructed in two separate cases depending on the
boundary conditions. One is the periodic boundary conditionQ(x + 2L) = Q(x). The
conserved charges are given byM(n) = ∫ +L−L J (n)0 = ψ(−L)− ψ(+L). (43) yields

M(1)(Q) =
∫ +L
−L

dx (j0(x)+ 2γ 0Q(x)). (46)

The next order (44) produces the nonlocal conserved charge as

M(2)(Q) =
∫ +L
−L

dx (j1(x)+ 4γ 1Q(x))

+
∫ +L
−L

dx
∫ +L
−L

dx ′ θ(x − x ′)(j0(x)+ 2γ 0Q(x))(j0(x ′)+ 2γ 0Q(x ′)). (47)

The expressions for higher conserved charges follow from (45). In the rapidly decreasing
case [9] with the boundary condition given by lim|x|→∞Q(x) = Q0(6= 0), the above
integrals with±L being replaced by±∞ diverge in general. They become finite after
subtracting their values in the ground state, i.e.M(n)

reg = M(n)(Q)−M(n)(Q0).
In summary, starting from a discussion of soliton solutions of simpleO(3) NLSM

and an integrally extended version of it, we verified that NLSM with the target space of
arbitrary HSS allows an integrable extension by using the coadjoint orbit formulation. The
covariant symplectic structure term on HSS results in the completely integrable equation of
motion, and an explicit expression for infinite number of nonlocal currents was obtained.
A more detailed analysis on the subject of classical and quantum integrability such as
Hamiltonian formulation and Poisson structure, current algebra, and multisoliton solutions
will be addressed elsewhere.
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